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Abstract. We rederive previously known results for the number of star and watermelon
configurations by showing that these follow immediately from standard results in the theory
of Young tableaux and integer partitions. In this way we provide a proof of a result, previously
only conjectured, for the total number of stars.

1. Introduction

In an earlier paper [1] the problem of vicious random walkers on aD-dimensional directed
lattice was considered. ‘Vicious walkers’ describes the situation in which two or more
walkers arriving at the same lattice site annihilate one another. Accordingly, the only
configurations allowed are those in which contacts are forbidden. Alternatively expressed,
we consider mutually self-avoiding networks of directed lattice walks, which also model
directed polymer networks. The connection of these vicious walker problems to the six-
vertex model in statistical mechanics is also discussed.

The problem, together with a number of physical applications, was introduced by Fisher
[2]. The general model is one ofp random walkers on aD-dimensional lattice who at regular
time intervals simultaneously take one step with equal probability in the direction of one of
the allowed lattice vectors.

The two standard topologies of interest are that of astar and awatermelon. Consider a
directed square lattice, rotated 45◦, so that the unit vectors on the lattice are(i+ j)/√(2)
and (i − j)/√(2). Both configurations consist ofp chains of lengthn which start at
(0, 0), (0, 2), (0, 4), . . . , (0, 2p − 2). The watermelon configurations end at(n, k), (n,2+
k), (n,4+k), . . . , (n, k+2p−2). For stars, the endpoints of the chains all havex-coordinate
equal ton, but they-coordinates are unconstrained, apart from the ordering imposed by the
non-crossing condition. Thus if the endpoints are(n, e1), (n, e2), (n, e3), . . . , (n, ep), then
e1 < e2 < e3 < · · · < ep 6 2p − 2+ n.

In [1] recurrence relations and the corresponding differential equations for stars and
watermelons on the directed square lattice were obtained. In the case of watermelons,
a determinental form was evaluated by standard techniques applied to the determinant.
In the case of stars, the results obtained were conjectural, being equivalent to an earlier
conjecture [3].

In this paper we show how a number of ‘standard’ results in the theory of Young tableaux
and partitions lead to a much more intuitive derivation of the above results. Furthermore,
the conjectured results are proved.
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As well as providing an alternative and more intuitive derivation of earlier results
and proving conjectures, this paper has a pedagogical purpose. We wish to introduce the
properties of Young tableaux, previously the domain of combinatorialists, to this domain of
physics. The power of these techniques will be further demonstrated in a subsequent paper,
in which we deal with the more difficult problems of stars and watermelons in the presence
of an impenetrable wall, and then sandwiched between two walls.

2. Determinants and self-avoiding networks of walks

Let L be an arbitrary set andK a commutative ring. UsuallyL will be chosen to be
the square latticeZ × Z, and K will usually be the ringZ[α, β, . . .] of polynomials
in variablesα, β, . . . and coefficients inZ. A valuation (also called aweight) is any
function v : L × L → K. A walk w (or path) is any sequencew = (s0, . . . , sn). We
say thatw starts at s0 and ends at sn. Each pair(si, si+1) is an elementary stepof w.
The weight v(w) of a walk is the product of the weights of its elementary steps, that is
v(w) = v(s0, s1) . . . v(sn−1, sn).

Let (A1, . . . , Ak) and (B1, . . . , Bk) be two sequences of points ofL. We assume the
following finiteness condition.

(F) For anyi, j, such that 16 i, j 6 k, the setWi,j of walks starting atAi and ending
at Bj , with non-zero weight, is finite.

This condition implies that the paths ofWi,j are self-avoiding. We can define the sum
ai,j =

∑
w∈Wi,j

v(w). If v(s, t) = 0 or 1, then ai,j is the number of paths ofWi,j . The
crossing conditionis the following.

(C) For anyi, j, i ′, j ′, such that 16 i < i ′ 6 k, 16 j < j ′ 6 k, w ∈ Wi,j ′ , η ∈ Wi ′,j ,

such thatv(w) 6= 0 andv(η) 6= 0, thenw
⋂
η 6= 0. (That is to say, the two pathsw andv

intersector have a common vertex.)
We can now state the following theorems.

Theorem 1 (Gessel and Viennot [4]).Let L, v(A1, . . . , Ak), (B1, . . . , Bk) satisfy both the
finiteness and crossing conditions. Then the determinant of the matrix(ai,j )16i,j6k is the
sum of the weights of all configurations of walks� = (w1, . . . , wk) satisfying the following
two conditions.

(i) The walks of� are pairwise disjoint, and
(ii) each walkwi goes fromAi to Bi .

In other words det(ai,j )16i,j6k =
∑

�=(w1,...,wk),(i),(ii)
v(w1) . . . v(wk).

This theorem was in fact anticipated by Lindström [5] in the context of matroids. The
application of this basic property to combinatorics was developed by Gessel and Viennot [4],
and subsequently widely used. In the combinatorial literature it is called the Gessel–Viennot
methodology.

A particular case is thevicious walker problem. In that case Fisher [2] showed the
appearance of the above determinant. In the same context, a probabilistic version of the
determinant was given by Karlin and McGregor [6].

Here we sketch the proof of the above theorem. By definition, the determinant of the
matrix (ai,j ) is

det(ai,j )16i,j6k =
∑
(σ,�)

(−1)Inv(σ )v(w1) . . . v(wk)

where the summation is over all permutationsσ of the symmetric groupσn. The
configuration� = (w1, . . . , wk) is such that the pathswi go fromAi to Bσ(i) and Inv(σ )
denotes the number ofinversionsof the permutationσ .
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In this summation, many terms have the same weight with opposite signs. Most of them
cancel pairwise. It can be shown that the remaining terms correspond to configurations of
the pairwise disjoint walks. Moreover the crossing condition implies that the remaining
terms correspond to the identity permutation. In fact the theorem holds in the following
more general form.

Theorem 2.If L, v, (A1, . . . , Ak), (B1, . . . , Bk) satisfy the finiteness condition, then

det(ai,j )16i,j6k =
∑
(σ,�)

(−1)Inv(σ )v(w1) . . . v(wk)

with the summation restricted toσ ∈ σn,� = (w1, . . . , wk) and is over all pairs(σ,�)
satisfying (i) and (ii). Furthermore, each walkwi goes fromAi to Bσ(i).

We illustrate the theorem by an example, that of binomial determinants [4].
Let L = Z×Z, and letv be the valuation defined by the following:v(s, t) = 1 iff t is

a neighbour ofs located just to the east or north ofs and the pointss and t are inside the
octant 06 y 6 x.

For any pointA = (i,0), i > 0, on the vertical axis, andB = (j, j), j > 0, on the
diagonal, the setW(A,B) of walks going fromA to B with non-zero weightv(W) is
nothing but the set of paths going fromA to B with elementary steps north or east.

Let P be the ‘enlarged’ Pascal triangle,P = (
i

j

)
06i,j

where the binomial coefficient,(
i

j

)
is zero whenj > i. A binomial determinantis any minor of the infinite matrixP . Let

0 6 a1 < · · · < ak and 06 b1 < · · · < bk be two strictly increasing sequences of non-
negative integers. The minor with row indices(a1, . . . , ak) and column indices(b1, . . . , bk)

is denoted by the following(
a1, . . . , ak
b1, . . . , bk

)
= det

(
ai
bj

)
16i,j6k

.

The notation is consistent with the notation of the binomial coefficient whenk = 1. For
16 i 6 k, let Ai = (ai, 0) andBj = (bj , bj ). We then have∑

w∈W(Ai,Bj )
v(w) =

(
ai

bj

)
that is the number of walks going fromAi to Bj and having elementary steps east and north.

The crossing condition is clearly satisfied. An immediate corollary is that any binomial
determinant is non-negative.

In the case of vicious walkers on a line as in [2], the crossing condition is satisfied and
Fisher’s determinant may be deduced from theorem 1. From the same theorem, we can also
deduce the determinants of [7, 8].

In the paper of Forrester [7], which treated vicious walkers on a cylinder, the crossing
condition (C) is not satisfied. Nevertheless, for an odd number of walkers, we can still apply
the Gessel–Viennot methodology as if the crossing condition were satisfied. This is because
the permutations appearing in the summation in theorem 2 are only circular permutations,
and forn odd, such permutations have an even number of inversions. Forrester’s proposition
then follows from theorem 2.

In [4] two important cases are given in which the binomial determinant can be calculated
as a ratio of two products. This is possible when the pointsA1, . . . , Ak are consecutive, or
when the pointsB1, . . . , Bk are consecutive (see also section 4 below).
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Figure 1. A simple path configuration on the top lattice is mapped
onto the bottom arrow configuration by orienting the path one way
and all other edges of the lattice the other way.

3. Vertex models and networks of directed walkers

For the moment let us examine the standard case where the valuations are as described
above, and so the Gessel–Viennot determinant evaluates the numbers of configurations of
walks on the lattice. We first place arrows on the walks such that they point in a direction
that has a component in the positivex-direction. On the rest of the lattice, that is on the
empty bonds, place arrows the opposite way. If we examine each vertex we notice that there
are two arrows into, and two arrows out of, each vertex: see figure 1. This is the so-called
ice rule [9–11] and maps each configuration of walks onto a configuration of the six-vertex
model of lattice statistical mechanics. Archetypical special cases were first solved—‘square
ice’ [10, 12]; Slater KDP [13]; Rys F model [14]—before the more general models were
considered: see [15] (symmetric six-vertex model: where the Boltzmann weights associated
with vertex configurations obtained from one another by reversing each edge arrow are
equal) and [16] (asymmetric six-vertex model where all six associated Boltzmann weights
can be different). General discussions of the six-vertex model and its history can be found
in [17, 11].

To complete the mapping one must consider the resulting Boltzmann weights of the
vertex model: see figure 2. The six weights of the vertex model{w1, w2, w3, w4, w5, w6}
are given as{1, 0, 1, 1, 1, 1}. We note that one weight is zero, corresponding to the vicious-
walker constraint. For convenience we shall denote the vertex model with these weights
as the vicious-walker vertex model. Our resultant vertex model is a special case of the it
modified KDP model of Wu [18, 19], which is itself a specialization of the full asymmetric
(all weights possibly different) six-vertex model [16]. (Full details of the solution of the most
general case announced in [16] have never been published, although many subcases have
appeared in the literature!) (This special case can be compared with some others: ‘square
ice’ [10, 12] has all weights equal, the Slater KDP [13] has weights{1, 1, w,w,w,w}, the
Rys F model [14] has weights{w,w,w,w,1, 1}, while the symmetric six-vertex model [15]
has weights{a, a, b, b, c, c}.) If we were to change the valuations so as to add a variable
that counted the total number of bonds in the walks we would have a full realization of
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Figure 2. At the top are the six possible path configurations at a vertex of the lattice. Below
each of these is the associated arrow configuration of the six-vertex model, while below that is
the six weights we associate with each of those configurations. Note that different authors use
different numbering.

the modified KDP model. The standard quantity for calculation in a statistical mechanics
model is the partition function, defined in this case as

Z6V =
∑

arrow configurations

∏
vertices of the lattice

(Boltzmann weights). (3.1)

Re-interpreted in terms of our path problem, this implies that the vertex partition function
calculates the sum of weighted paths overall possible configurations ofany number of
walks. Note that in the calculation of the partition function each weight vertex on the
lattice can be trivially multiplied by a common factorf without effecting the difficulty of
the calculation (giving simply a factorf (# vertices)).

This mapping of vertex configurations to bond or walk configurations (sometimes
considered as domain wall and crystal surface configurations [20, 21, 2, 22]) has been
well known for some time [18]. Note that the traditional setting of the vertex model lattice
has not been at 45◦ as here, though such cases have been considered [21, 23]. Of course,
for thermodynamic vertex model quantities, such as the free energy, the orientation of the
lattice is unimportant.

We must however be careful in identifying the problem of counting walkers starting from
a fixed set of positions to a fixed set of ending positions with the thermodynamic calculations
of vertex models which flow from the partition function described above. To be precise, we
need to note the following. By fixing the numbers of walks we are considering an invariant
subspace of the transfer matrix described by the number of ‘forward’ arrows. Also, the
transfer matrix is most naturally defined on a finite strip: if we want to consider walks
without walls we must choose our strip wide enough to ensure that walk configurations
never touch the strip edge (or, with periodic boundary conditions, that the top walk does
not approach the bottom walk). Most importantly, when we calculate the number of walks
with fixed starting and ending positions we are evaluating the appropriate matrix element
of the transfer matrix raised to the length of the walksn. That is, we find

〈φf |T n|φi〉 (3.2)

whereT is the transfer matrix and〈φf | and |φi〉 are vectors describing the initial and final
states (the positions of the walkers). To evaluate this one may spectrally decompose the
transfer matrixT into

T n =
∑
j

|ψj 〉λnj 〈ψj | (3.3)
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where|ψj 〉 andλj are the normalized eigenvectors and eigenvalues respectively ofT . This
is akin to calculating the correlation functions of the vertex model rather than the free
energy (which is simply related to the maximum eigenvalue), if it were not for the subspace
restriction! On the other hand summing over both sets of endpoints gives us a reduced
partition function for that sector (which can be found from the eigenvalues of that sector
alone). Hence calculating weighted path sums is somewhere between calculating correlation
functions and the partition function in difficulty.

Some further technical points to note are that, first, the transfer matrix that is usually
defined is an edge-to-edge transfer matrix acting on a vector space describing the ‘states’
of rows of edges. Second, in the 45◦ direction, either, two different transfer matrices are
needed to account for the bipartite nature of the vertices, or one needs to consider two
independent interlocking lattices: we refer the interested reader to [24] for more details.

We also make some observations about the vertex model onto which our vicious walker
problem maps. With the weights as given above the model satisfies the so-calledfree-
fermion condition [25] which implies that the vertex model [26] can also be solved by the
method of Pfaffians [27]. Here the vertex model on the square lattice is mapped [18, 19]
onto a dimer problem [28, 27] on the honeycomb lattice [29–31]. For the six-vertex model
the free-fermion condition states

w1w2+ w3w4 = w5w6. (3.4)

The origin of the name ‘free fermion’ lies in a field-theoretic (S-matrix) approach to
the problem [29, 32]. Also, in the more general eight-vertex setting the conditions
w1w2 = w7w8 and w3w4 = w5w6 [32, 17] allow the vertex model to be mapped to a
nearest-neighbour Ising model on the triangular lattice, the transfer matrix of which can
be written in terms of fermionic operators and hence solved by the Schultz, Mattis and
Lieb approach [33]. (The six-vertex model hasw7 = w8 = 0 and so our vicious-walker
model satisfies those conditions, though the resultant Ising model has some infinite coupling
strengths.)

Importantly in our context, the free-fermion cases of the six-vertex model admit the
calculation and analysis of correlation functions [34, 35], which we mentioned above is
similar to the calculation of the walk configuration numbers (in that both neednormalized
eigenvectorsas well as eigenvalues to be calculated). This calculation is possible because
the eigenvectors of the transfer matrix used in the calculation are given in terms of the
Bethe ansatz, which is a superposition of plane wave states. Moreover, the wavenumbers
of these states are usually given by a set of nonlinear coupled equations called the Bethe
ansatz equations. When the free-fermion condition holds these equations decouple and an
explicit solution can be found in terms of a set of wavenumbers, each of which is a valid
solution of the one forward arrow sector equation (one-walker problem). In fact then-
walker eigenfunction becomes simply a sum of a product of the one-walker eigenfunctions.
This sum of products is the evaluation of a determinant [34]. These determinant forms
parallel the general path results of Gessel–Viennot [4] for a different type of calculation. A
more explicit explanation of the relationship between the transfer matrix approach to vertex
models and the determinantal formulae for lattice paths can be found in [24].

To end this section we note that the vertex-walk model mapping has recently allowed
calculation and analysis of other interacting cases using the Bethe ansatz solution of the
six-vertex model [36, 37]. Also, a generalized case of the vicious-walker vertex model,
still with w2 = 0 but falling outside the free-fermion condition generally, known as the
five-vertex model, has recently been solved as a model of interacting dimers [38].
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4. Stars with fixed endpoints

We now revert to the vicious-walker problem and show the application of theorem 1 to the
situation of stars. As shown in [1], the first step in these lattice path problems is to write
down ap × p determinant whose(i, j)th element is the binomial coefficient giving the
number of paths from theith starting point to thej th endpoint. That is to say, the number
of stars is given by

det
16i,j6p

(|P(Aj → Ei)|) (4.1)

whereP(A → E) denotes the set of all lattice paths fromA to E. Each path number
|P(Aj → Ei)| is a binomial, so that (4.1) equals

det
16i,j6p

((
n

n+ei
2 − j + 1

))
.

This result was first given explicitly in [39, corollary 2] (see also [40, theorem 1.2]) but,
as noted above, is implicit in earlier work [5, 6].

The determinant can be expressed as a product formula, as shown in appendix C of [1],
explicitly

2−(
p

2)
p∏
i=1

(n− i + p + 1)!(
n+ei

2

) (
n−ei

2 + p − 1
)
!

∏
16i<j6p

(ej − ei). (4.2)

In [1] the result was obtained by first principles, that is to say, by a sequence of row
and column operations applied to the determinant.

These operations can be greatly simplified by using a lemma [41, lemma 2.2], which
has in turn been shown to be deriveable from Dodgson’s formula [42].

Lemma 1.Let X1, X2, . . . , Xp,A2, . . . , Ap, B2, . . . , Bp be any entries in the determinant.
Then

det
16i,j6p

((Xi + Ap) . . . (Xi + Aj+1)(Xi + Bj) . . . (Xi + B2))

=
( ∏

16i<j6p
(Xi −Xj)

)( ∏
26i6j6p

(Bi − Aj)
)
. (4.3)

An alternative, and easier proof of (4.2) is then obtained by removing as many common
factors from the determinant as possible, giving

(−1)(
p

2)
(n!)p∏p

i=1

(
n+ei

2

) (
n−ei

2 + p − 1
)
!

det
16i,j6p

((−n+ ei
2

− p + 1

)
. . .

(−n+ ei
2

− j
)

×
(
n+ ei

2
− j + 2

)
. . .

(
n+ ei

2

))
.

Now applying the above lemma withXi = ei/2, Ai = −n/2− i + 1, Bi = n/2− i + 2, a
little simplification yields (4.2).

4.1. Total number of stars

To obtain thetotal number of stars (no fixed endpoints) one must sum (4.2) over all possible
endpoints. Aconjecturedproduct formula is given in [1]. This is∏

16i6j6n

p + i + j − 1

i + j − 1
. (4.4)
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Figure 3. (a) A typical star configuration and (b) associated tableau.

As also pointed out in [1], this is equivalent to another conjecture in [3]. We will show
below that (4.4) follows immediately from standard results in the theory of tableaux, thereby
proving the above result and the equivalent conjecture.

5. Correspondence between stars and Young tableaux

There is a standard bijection between stars withp branches of lengthn and semi-standard
Young tableaux with entries{1, 2, . . . , n} having at mostp columns.

A typical star configuration is shown in figure 3. To each path going fromAi to Ei
(16 i 6 p) we associate the increasing sequence of integers formed by thex-coordinate of
the endpoint of its south-west steps. Placing these integers in columns (increasing from top
to bottom) and writing the columns from left to right (corresponding to paths 1, 2, . . . , p),
we obtain the tableau shown. Note that theith branch runs fromAi = (0, 2i − 2) to
Ei = (n, ei), i = 1, 2, . . . , p. In figure 3(a), p = 4, n = 6, e1 = 0, e2 = 2, e3 = 6,
e4 = 10.

The shapeof the tableau is determined by the endpoints of the star. The shape is
λ = (λ1 > λ2 > · · · > λn > 0) whereλi is the number of elements in theith row, and the
entries are in{1, 2, . . . , n}.
Theorem 3.There is a one-to-one correspondence (a bijection) between non-crossing stars
with p branches of lengthn and semistandard Young tableaux with entries in{1, 2, . . . , n}
having at mostp columns.

A straightforward proof relies on formalizing the observation that each star gives a
unique tableau, and that each tableau gives a unique star.

The shape of the tableau is determined by the endpointsE1, E2, . . . , Ep. A moment’s
thought suffices to establish that watermelons are in bijection withrectangular tableaux.
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Figure 4. Examples of (a) the hook lengths and (b) the contents of a tableau.

Having shown the correspondence between stars, watermelons and tableaux, an
alternative, and more powerful method of the proof of these and other results relies on
established results in the theory of tableaux. Thus, for example, to count the number of
stars with fixed endpoints, we need only count the total number of tableau of a given
shape—corresponding to the star. The total number of stars is obtained by counting the
total number of tableaux. These observations are formalized in the following sections.

We first require the definition of two additional concepts, that of thecontentandhook
length of a tableau.

For each cell thehook lengthis defined as 1 plus the number of cells below and to the
right of the given cell, as shown in figure 4(a). The contentof cell (i, j) is simply j − i,
thus the contents are obtained by labelling the main diagonal cells by 0, the diagonal above
the main diagonal has all cells labelled 1, and the diagonal below the main diagonal has all
cells labelled−1 (see figure 4(b)). Diagonals two removed from the main diagonal have
all their cells labelled±2 according to whether they are above or below the main diagonal.

Clearly, these are properties merely of the tableau’sshape.A standard result gives the
number of such tableaux. It was first proved by Stanley [43], who gave an inductive proof.
As a result in the theory of non-crossing paths it appears in [39].

The required result is that the number of tableau of a given shape can be written as a
quotient of the formproduct

product, where the denominator is a product over hook lengths
∏
x hx ,

and the numerator is
∏
x(n+ cx). The product is taken over all cellsx of the tableau.hx

denotes the hook length of cellx, andcx denotes the content of cellx. Recall thatn is just
the length of each path.

In a given tableau, the column lengths are given byn−e1
2 , n−e2

2 , . . . ,
n−ep

2 . The shape
is just the vector of row lengths, which can readily be extracted from the column lengths.
From the shape, the content readily follows. In this way, the product

∏
x
n+cx
hx

can be
converted to (4.2).

An alternative, and simple proof based on the properties of Schur functions can also
be given. As this proof requires the more powerful machinery of the theory of symmetric
functions, it will be given in a subsequent paper, in which we consider the problem of
enumerating stars and watermelons in the presence of an impenetrable wall.

5.1. Total number of stars

The conjectured result for thetotal number of stars (4.4) can readily be proved by appealing
to a well known result in the theory of tableau. Thus, we have the following theorem.

Theorem 4.The number of stars of lengthn with p branches equals∏
16i6j6n

p + i + j − 1

i + j − 1
. (5.1)
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Using the correspondence between stars and tableaux described in theorem 3, we see
that we wish to count the total number of tableaux with entries at mostn having at mostp
columns.

The result of this enumeration problem (actually the more difficultq-analogue problem)
was known for many years under the nameBender–Knuth conjecture, and was first proved
by Gordon around 1970 (but appeared only much later as [44]). Taking the limitq → 1
immediately gives (5.1).

The proof of theBender–Knuth conjecturewill also be given in a subsequent paper,
once the relevant machinery is developed.

5.2. Watermelons with given deviation

Let W̄p

m,k be the number of watermelons having lengthm, with p hairs, and deviationk > 0.
(The casek < 0 is obtained by reflection from the casek > 0.) The starting points are
(0, 0), (0, 2), . . . , (0, 2p−2), and the ending points are(m, k), (m, k+2), . . . , (m, k+2p−
2). A formula for W̄p

m,k written as product
product was derived in [1], as a special case of (4.2). We

show how it can be obtained combinatorially as follows, following the prescription of the
previous section.

From theorem 3 it follows that such a watermelon configuration corresponds to a
rectangular tableau withp columns andn = m−k

2 rows. The hook length and content
of the tableau is shown below.

n+ p − 1 · · · n+ 2 n+ 1 n

n+ p − 2 · · · n+ 1 n n− 1
...

...
...

...
...

p + 1 · · · 4 3 2
p · · · 3 2 1

The above table gives the hook lengthshx , while the contentscx are given by

0 1 2 · · · p − 1
−1 0 1 · · · p − 2
...

...
...

...
...

2− n 3− n 4− n · · · p − n+ 1
1− n 2− n 3− n · · · p − n

Then

W̄
p

m,k =
∏
x(m+ cx)∏

x hx
=

p∏
i=1

n∏
j=1

m+ i − j
i + j − 1

(5.2)

where the denominator is given by the product of the hook lengths and the numerator by the
product of the contentscx shifted bym for all cells x of the tableau. For small deviations
(k = 0 andm = 2n) and (k = 1 andm = 2n+ 1), this product simplifies to

W̄
p

2n,0 =
∏

16i,j6n

p + i + j − 1

i + j − 1
(5.3)

W̄
p

2n+1,1 =
∏

16i6n,16j6n+1

p + i + j − 1

i + j − 1
. (5.4)

At first sight the equality of (5.2) and (5.3), (5.4) seems unlikely, as there arenp terms
in the numerator and denominator of (5.2), compared withn2 terms in the numerator and
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Figure 5. A watermelon configuration and associated plane partition.

denominator of (5.3) andn2+n terms in the numerator and denominator of (5.4). However,
it is readily seen that ifn > p, the terms in the numerator of (5.3) withi < n−p+1 exactly
cancel the denominator terms withi > p. If n < p, the terms corresponding to the first
p − n columns in the tableau contributing to both the numerator and denominator cancel.
Similar considerations establish the equality of (5.2) and (5.4) for the casem = 2n+ 1.

5.3. Watermelons and plane partitions

It is instructive to consider another bijection, that between watermelons and plane partitions.
In this case, watermelons enumerated byW̄

p

m,k are in bijection with classicalplane partitions
embedded inr × n rectangles, withn = (m+ k)/2, r = (m− k)/2 and with parts6 p.

A plane partition is a tableauai,j of non-negative integers (calledparts) such that these
integers are weakly decreasing in both rows and columns (from both left to right and from
top to bottom). That is to say,ai,j > ai,j+1 > 0, andai,j > ai+1,j > 0. The plane partition
of figure 5 has ashapewhich is embedded in a 4× 7 rectangle. It is constructed by
collapsing all the paths, so that the path starting atAi = (0, 2i− 2) has they-coordinate of
every point reduced by 2i − 2.

Refer to figure 5. By vertically translating each path downwards so that the starting
and ending vertex coincide, we get all paths in ann× r rectangle (in this exampler = 4,
n = 7) and all starting in the top, left corner of the rectangle and all finishing in the bottom,



8134 A J Guttmann et al

right corner of the rectangle.
The bijection is obtained by first rotating the partition 45◦ clockwise (so that its

orientation on the page is the normal one) and then labelling each cell of ther×n rectangle
by the number of paths passing above the north-east corner of that cell. The plane partition
is then obtained by deleting all the 0 entries. The largestpart or entry is the number of
paths different from the path formed byr south steps followed byn east steps. Thus the
biggest part is6 p. This is a one-to-one correspondence.

If we now put a stack ofai,j cubes on each cell of ther × n rectangle, we obtain the
three-dimensionalsolid representationof the plane partition (or three-dimensional Ferrers
diagram), in which the diagram is embedded in anr × n× p box.

Such solid diagrams, or plane partitions, have been enumerated in [45] as

Pr,n,p =
r∏
i=1

n∏
j=1

p∏
l=1

i + j + l − 1

i + j + l − 2
. (5.5)

This formula is equivalent to

Pr,n,p =
r∏
i=1

n∏
j=1

p + i + j − 1

i + j − 1
(5.6)

which is just the formula above for the number of watermelons.

6. Discussion and conclusion

In this paper we have shown that by appealing to standard results in the theory of Young
tableaux and plane partitions, results obtained previously by direct algebraic means can be
obtained more directly, and arguably more transparently. By this means we prove a result
that was previously only conjectured.

In a subsequent paper, we shall show how these same techniques can fairly readily
provide exact results for the more difficult lattice path problem in the presence of a wall.
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